
ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2492

All Rights Reserved © 2016 IJARCET

Analysis of Software Complexity Using Object

Oriented Design Metrics in Java Application

Minimol Anil Job

Assistant Professor, Faculty of Computer Studies

Arab Open University, Kingdom of Bahrain

Abstract- Ensuring quality of the software

without the knowledge of software evaluation

metrics is difficult. Some measurement

methodologies are required in completion of

software quality evaluation. Software Metrics are

essential in software engineering formeasuring

software complexity, estimating size and

evaluating qualityof the software as well as project

efforts. This research paper focuses on evaluation

of software complexity metrics applied in object

oriented systems by evaluatingsource codes

developed in Java. To evaluate the complexity the

software metrics used in the research are Lines of

Code (LOC) and cyclomatic complexity. The

complexity of Java classes in a package is

determined using software tools. The results show

that these complexity metrics can be used to

predict the quality of the software.Software

system can be evaluated using software metrics

thus quality can be improved.

KEYWORDS- Software quality, Complexity,

Cyclomatic complexity, LOC, object oriented metrics

I. INTRODUCTION

In this digital era every business is a digital business:

a social, mobile, and web-focused business.The usage

of information systems in organizations has increased

significantly due to the advancement of IT industry.

Software quality estimation has been proved to be

one of the most motivating researches in the context

of software engineering. To ensure the development

of high quality software systems developers need to

understand and adopt software quality metrics during

development process [1][2]. Product metrics are

directly associated with the product thus there is a

need to measure quality or characteristics of a

product to ensure quality in the developed product.

Developing a good software system is a challenging

task and software quality assurance is faced with

many challenges. Good software metrics must have

the ability to measure and predict the quality of the

developed software. Software metric is a measurable

property which is an indicator of one or more of the

quality criteria that we are seeking to measure [1].

This paper assess the quality of software using

specific matrices, complexity metrics, applied in

object oriented programming by evaluating source

codes developed in Java.

II. RELATED LITERATURE

Major customer expectationabout a software product

is that the developed software will boost

productivity[1][3]. The complex systems we build do

work and they demonstrate the skills of the software

engineers who build them, and also to the techniques

that they use. These techniques are sometimes based

on scientific or mathematical rules. The contributions

of applicable science and mathematics in the

development of software systems are increasing.

Some such contributions are finite automata (from
discrete mathematics), to describe the behavior of a

system; statistics, to show when testing is sufficiently

complete; formal methods, for the development of

critical components – an example being the use of

mathematical notations to specify behaviors

unambiguously; metrics, for the measurement of

quality attributes. In this section you will study a

number of examples of metrics and their use in

quality measurement. [4][5]McCall has written very

widely on the subject of software quality. McCall and

Cavano (1978) identified three general types of

requirements that impinge on software product
quality; these types still stand today. The three types

are: product operation requirements, product revision

requirements and product transition

requirements.[8][9][10] In addition, McCall

described which attributes of a software product, or

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2493

All Rights Reserved © 2016 IJARCET

software quality factors (SQFs) as he termed them,

are affected by these three types of requirements,

product operation requirements, product revision

requirements and product transition

requirements[6][7][8].Product operation requirements

are Correctness: Reliability: Efficiency, Integrity and
Usability. Product revision requirements are

Maintainability, Testability and Flexibility. Product

transition requirements are Portability, Reusability

and Interoperability. Primary Software quality

Factors and their measurements are Correctness,

Integrity,Maintainability and Usability. [6][9].

This paper assess the quality of software using

specific matrices applied in object oriented

programming by evaluating source codes developed

in Javato measure the complexity of the code.Some

of software metrics which are measurable quantities
that can be used to infer the values for the SQFs:

complexity, consciences,security...etc. Some of them

such as complexity can be directly estimated from the

code of an implementation. Others, such as training,

are subjective and require questionnaires or

checklists to be developed and assessed, and

calculations made there from.

2.1 System complexity could be measure by two

approaches:

 Lines-of-code metric (LOC) is given by counting
the number of lines in a piece of code.More lines

imply more errors.

 McCabe’s cyclomatic-complexity

metricmeasures the complexity of method by

counting number of independent paths in

method. Number of independent paths = number

of decision points, each one of the: if, (while, do

while, for) loops, switch for each non-default

case test, try for each catch block but not the

final block, &&, ||, add 1 to cyclomatic

complexity, start counting from 1.

2.1 Additional object-oriented complexity metrics

Object-oriented systems require two levels of

complexity metric, one to measure method

complexity and the other to measure the complexity

of the class structure.

Depth-of-inheritance-tree (DIT) metric:DIT is

defined as the largest number of hops through an

object’s superclasses, where the starting class is

numbered 0. For a single inheritance programming
language like Java, this means that the DIT is the

number of ancestors + 1, but in languages like C++

that support multiple inheritances.[12]

Coupling-between-objects (CBO) metric: for a given

class, CBO is defined as the number of relationships

the class has with other classes. The more

relationships a class has, and so the higher the value

of this metric, the more difficult it is to understand

the use of the given class.[12][13]
Number-of-children (NOC) metric: for a given class,

NOC is defined as the number of immediate children

for that class. This metric is a measure of the number

of classes that will be affected by changes to a given

parent class.[12][13]

Response-for-a-class (RFC) metric:for a given class,

RFC is defined as the size of the response set for the

class, which consists of all the methods of this class

(including methods inherited from superclasses),

together with all the methods that are invoked on

objects of other classes.

Lack-of-cohesion-in-methods (LCOM) metric:for a
given class, LCOM measures its cohesiveness.

LCOM is defined as the number of pairs of methods

that do not make reference to the same attributes,

minus the number of pairs of methods that do, or zero

should this be negative. In highly cohesive classes,

methods will manipulate the same attributes.[13][14]

Weighted-methods-per-class (WMPC) metric: for a

given class, WMPC measures its complexity of

behavior. It is defined as the sum of the cyclomatic

complexities of each method of the class. .[13][14]

The below table shows the Object oriented constructs

for the complexity metrics.[12]

Metric Java Construct

CyclomaticComplexity Method

Lines of Code Method

Depth-of-inheritance-tree

(DIT)

Inheritance , to find the

depth of the tree

Coupling-between-

objects (CBO)

Coupling

Number-of-children

(NOC)

Inheritance , to find the

number of decedents of

the class

Response-for-a-class

(RFC)

Class/Message

Lack-of-cohesion-in-

methods (LCOM)

Class/Cohesion

Weighted-methods-per-

class (WMPC)

Class/Method

Table-1: Object oriented constructs and complexity

metrics

III. METHODOLOGY

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2494

All Rights Reserved © 2016 IJARCET

The method adopted in this research is theoretical

analysis through related literature and practical

analysis using specific software. The researcher

studied and evaluated software quality attributes

through related literature by reading various books in

the discipline and also by referencing related articles
published. Object-oriented complexity metrics are

analyzed through research from articles and books.

The practical approach used in determining the size

and complexity using software tools.

Lines of code (LOC): This measure has been found

through the Java integrated Development

Environment (IDE)- NetBeans. Using a text editor

like Notepad or an IDE like NetBeans to write the

program, saving the program (source code) in a .java

file then compiled using the command javac to

create a .class file, which contains the compiled

version of the program (Java byte code)

Cyclomatic Complexity Metrics: This measure has
been found using the software CyVis in which the

researcher found the complexity, total number of

methods and number of lines. [15]CyVis is a free

software metrics collection, analysis and

visualization tool for java based software.CyVis

collects data from java class or jar files. Once the

data is collected, metrics like number of lines,
number of statements, methods and number of

decision pointsare determined for the selected classes

in a package. Cyclomatic complexity metric can also

be determined using the number of independent paths

in a method.Once the metrics are collected, the

statistical information can be viewed as charts,

graphs and tables. The visualization of information is

presented in a way, that the developer will be able to
know something might be wrong in their developed

software.

IV. DATA ANALYSIS AND RESULTS

The complexity metrics used in this research is not

directly supporting the measurement of software

quality determination. But these metrics help the

developers to find the factors affecting the

performance of classes in a developed system and

thus will be able to suggest improvement

mechanisms. Furthermore most complex parts of

each class can be determined and suggest more

attentive actions to those parts.

Lines of Code (LOC) are the total number of

executable lines, comment lines are excluded. Below

tables shows the results of experiments for various

Java Classes

Package Test includes six classes. Following figure

shows the number of methods and number of lines of

code in each class.

Figure-1 : Lines of Code and Number of Methods in classes in the Package

The package named “Test” used in this practical

experiment consisits of 6 classes. The lines of code

and number of methods used in each class is

computed and presented in Figure-1. Classess Test1,

Test2, Test3, Test4, Test5 consists of two ,mehods

each and Class Test6 consists of 3 methods. By

adding the total number of lines in the claasess total

number of lines of code in each package can be

determined. Thus total number of lines of code can

be determined for the develped software.

The cyclomatic complexity is calculated by

counting the number of methods and the complexity

in the control flow of lines.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2495
All Rights Reserved © 2016 IJARCET

Figure-2 : Cyclomatic Complexity for the package

Figure-3 : Cyclomatic Complexity Measures Preferences

The six classes’ in Package “Test” complexity is

evaluated and presented in Figure-2. The vertical bars

in the figure repreensts classes and the horizontal lnes

represemts methods. The shaded colours in each

method shows the cyclomatic complexity of that

particular method. Figure-3 shows the Cyclomatic

Complexity Measures Preferences. Red colour shows

high complexity and it has a value 7 and above.

Yellow colour shows moderate complexity and it has

a value between 4 and 7. Green colour shows low

complexity and it has a value between 0 and 4. The

other two colours representas interfecase and empty

interface.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2496
All Rights Reserved © 2016 IJARCET

Cyclomatic complexity of class Test1 is shown in

Figure-4 below. From the figure it is clear that the

class has low complexity for the two methods

included in the class because both the divisions are in

green color.The complexity is low for this class

method due to the fact that both methods used in the

class has less number of independent paths or number

of decision points. That is less of usage of if, (while,

do while, for) loops, switch for each non-default case

test, try for each catch block but not the final block,

&&, || operators in both methods.

Figure-4 : Class Test-1 Cyclomatic Complexity Visualization

Cyclomatic complexity of class Test2 is shown in

Figure-5 below. From the figure it is clear that the

class has two methods and the first method has

moderate complexity which is shown in yellow color

and the other method has low complexity which is

shown in green colour.The reason for this difference

is the number of independent paths or number of

decision points used differently in both methods.

That is less of usage of if, (while, do while, for)

loops, switch for each non-default case test, try for

each catch block but not the final block, &&,

||operators in the lower class method and more usage

in the upper class method.

Figure-5 : Class Test-2Cyclomatic Complexity Visualization

Cyclomatic complexity of class Test3 is shown in

Figure-6 below. From the figure it is clear that the

class has low complexity for the two methods

included in the class because both the divisions are in

green color.The complexity is low for this class

method due to the fact that both methods used in the

class has less number of independent paths or number

of decision points. That is less of usage of if, (while,

do while, for) loops, switch for each non-default case

test, try for each catch block but not the final block,

&&, || operators in both class methods.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2497
All Rights Reserved © 2016 IJARCET

Figure-6 : Class Test-3Cyclomatic Complexity Visualization

Cyclomatic complexity of class Test4 is shown in

Figure-7. From the figure it is clear that the class has

two methods and the first method has high

complexity which is shown in red color and the other

method has low complexity which is shown in green

colour.The complexity is high in one method because

this method uses more number of independent paths

or number of decision points. That means more usage

of if, (while, do while, for) loops, switch for each

non-default case test, try for each catch block but not

the final block, &&, || operators in the upper class

method and less usage in the lower class method.

Figure-7 : Class Test-4Cyclomatic Complexity Visualization

Cyclomatic complexity of class Test5 is shown in

Figure-8. From the figure it is clear that the class has

low complexity for the two methods included in the

class because both the divisions are in green

color.The complexity is low for this class method due

to the fact that both methods used in the class has less

number of independent paths or number of decision

points. That is less of usage of if, (while, do while,

for) loops, switch for each non-default case test, try

for each catch block but not the final block, &&, ||

operators in both methods.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2498
All Rights Reserved © 2016 IJARCET

Figure-8 : Class Test-5Cyclomatic Complexity Visualization

Cyclomatic complexity of class Test6 is shown in

Figure-9. From the figure it is clear that the class has

three methods and the first method has medium

complexity which is shown in yellow color and the

other two methods have low complexity which are

shown in green colour.The reason for this difference

is the number of independent paths or number of

decision points used differently in both methods.

That is less of usage of if, (while, do while, for)

loops, switch for each non-default case test, try for

each catch block but not the final block, &&, ||

operators in the lower class methods and more usage

in the upper method.

Figure-9 : Class Test-6Cyclomatic Complexity Visualization

V. CONCLUSION

In this paper software quality metrics and the

methods to measure them are observed as well as

evaluated using software tools. Software

measurement and metrics help us a lot of evaluating

software process as well as the software product.

Since the research is based on the object oriented

software metric evaluation, Java classes are used for

observation. The results show that these complexity

metrics can be used to predict the quality of the

software. Lines of code will help in software

maintenance. The cyclomatic complexity metric

shows which part of the program code has more

complexity and this will help the developers to give

more attention to those parts. Well-designed metrics

with documented objectives can help developers to

improve its software product, processes, and

customer services.A future research is recommended

to evaluate the other Object-oriented Complexity

metrics which will help the software developers to

ensure the quality of the software.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 5, Issue 10, October 2016

2499
All Rights Reserved © 2016 IJARCET

REFERENCES

[1] Alan Gillies, Software Quality: Theory and

Management (3rd edition) Paperback –

January 17, 2011

[2] José P. Miguel , David Mauricio, Glen
Rodríguez, A Review of Software Quality

Models for the Evaluation of Software

Products ,International Journal of Software

Engineering & Applications (IJSEA), Vol.5,

No.6, November 2014

[3] Thapar SS & Singh P & Rani S. (2012)

“Challenges to the Development of Standard

Software Quality Model,” International

Journal of Computer Applications (0975 –

8887) Volume 49– No.10, pp 1-7.

[4] Klas Michael &Constanza Lampasona
&Jurgen Munch. (2011). “Adapting Software

Quality Models: Practical Challenges,

Approach, and First Empirical Results,” 37th

EUROMICRO Conference on Software

Engineering and Advanced Applications,

978-0-7695-4488-5/11, IEEE pp. 341-348

[5] PensionwarRutuja K & Mishra Anilkumar&

Singh Latika. (2013). “A Systematic Study

Of Software Quality – The Objective Of

Many Organizations, ”International Journal

of Engineering Research & Technology
(IJERT), Vol. 2 Issue 5

[6] Al-BadareenAnas Bassam. (2011). “Software

Quality Evaluation: User’s View,”

International Journal of Applied Mathematics

and Informatics, Issue 3, Volume 5, pp 200-

207

[7] Ghayathri J &Priya E. M. (2013) “Software

Quality Models: A Comparative Study,”

International Journal of Advanced Research

in Computer Science and Electronics

Engineering (IJARCSEE) ,Volume 2, Issue 1,

pp 42-51
[8] Galin, Daniel (2004), Software Quality

Assurance – From theory to implementation,

Pearson –Addison Wesley, England

[9] HuaiLiu ,Fei-ChingKuo , TsongYueh Chen

“Teaching an End-User Testing

Methodology”Software Engineering

Education and Training (CSEE&T), 2010

23rd IEEE Conference on 9-12 March 2010

[10] A Literal Review of Software Quality

Assurance,C. SenthilMurugan S.

PrakasamPh.D.,International Journal of
Computer Applications (0975 – 8887)

Volume 78 – No.8, September 2013

[11] Amit Sharma1, Sanjay Kumar Dubey2,

IJCSMS International Journal of Computer

Science & Management Studies, Special

Issue of Vol. 12, June 2012ISSN (Online):

2231 –5268, www.ijcsms.com, Comparison

of Software Quality Metrics forObject-

Oriented System

[12] C. Neelamegam, M. Punithavali, “A survey

onobject oriented quality metrics”, Global
journal ofcomputer science and technologies,

pp 183-186,2011.

[13] A. Deepak, K. Pooja, T. Alpika, S.

Sharma,“Software quality estimation through

objectoriented design metric JCSNS

Internationaljournal of computer science and

network security , April 2011, pp 100-104.

[14] Gurdev Singh. et al.,” A Study of Software

metrics”, IJCEM International Journal of

Computational Engineering & Management,

Vol. 11, January 2011

[15] cyvis.sourceforge.net

Author’s Biography

Dr Minimol Anil Job is working as an Assistant

Professor in ITC Department at Arab Open

University’s Bahrain Branch. She has more than

twelve years of academic experience in the field of

Information Technology. Her research interests

include Software Engineering, Database

management, big data analysis and cloud computing

https://www.amazon.com/s/ref=dp_byline_sr_book_1?ie=UTF8&text=Alan+Gillies&search-alias=books&field-author=Alan+Gillies&sort=relevancerank
http://www.ijcsms.com/

